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Let λ1(G) and �(G), respectively, denote the largest eigenvalue and the maximum
degree of a graph G. Let T 2m be the set of trees with perfect matchings on 2m vertices,
and T (�)

2m = {T ∈ T2m |�(T ) = �}. Among the trees in T (�)
2m (m � 2), we characterize

the tree which alone minimizes the largest eigenvalue, as well as the tree which alone
maximizes the largest eigenvalue when

⌈m
2

⌉ + 1 � � � m. Furthermore, it is proved

that, for two trees T1 and T2 in T2m (m � 4), if
⌈

2m
3

⌉
� �(T1) � m and �(T1) >

�(T2), then λ1(T1) > λ1(T2).
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1. Introduction

Let G be a simple graph with vertex set V (G) = {v1, v2, . . . , vn} and A(G)

the adjacency matrix of G. The characteristic polynomial of G is just P(G, λ) =
det(λI − A(G)). Since A(G) is a real symmetric matrix, all of its eigenvalues
λi (G), i = 1, 2, . . . , n, are real. We assume, without loss of generality, that
λ1(G) � λ2(G) � · · · � λn(G), and call them the eigenvalues (or the spectrum) of
G. Particularly, λ1(G) is called the largest eigenvalue (or the spectral radius, or
the index) of G. Throughout this paper, we denote the set of trees on n vertices
and the set of trees with perfect matchings on 2m vertices by Fn and T2m , respec-
tively. Let dG(v) denote the degree of a vertex v of G, and �(G) the maximum
degree of G. Let F (�)

n = {T ∈ Fn|�(T ) = �} and T (�)

2m = {T ∈ T2m |�(T ) = �}.
Spectra of graphs are important graph structural invariants, which have

numerous applications in chemistry. In quantum chemistry the skeletons of cer-
tain non-saturated hydrocarbon molecules are represented by so-called molecu-
lar graphs. In [1, 2] it was recognized that the famous Hückel molecular orbital
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(HMO) theory is fully equivalent to the graph spectral theory, namely, the eigen-
values of the adjacency matrix of a molecular graph are identical with Hückel
orbital energy levels, and the eigenvectors are identical with the Hückel molec-
ular orbitals. In particular, following a suggestion by Lovász and Pelikán [3],
and Cvetković and Gutman [4] proposed that the spectral radius of a molecular
graph be used as a measure of branching of the molecule. Therefore, since the
fifties last century, eigenvalues of graphs have been intensively investigated (see
[5–7]). In particular, the largest eigenvalues of trees, unicyclic graphs and bicy-
clic graphs were considered (see [8–17]).

Most of the early results of the graph spectral theory are concerned with
the relation between spectral and structural properties of a graph. As for the
relation between λ1(G) and �(G) for a graph G, it is well known that

√
�(G) �

λ1(G) � �(G) (see [4]). If G is just a tree, Godsil [13] showed that λ1(G) <

2
√

�(G) − 1. We [14] considered the relation for a tree in Fn. Let Bn,n−�+1(2 �
� � n − 1) be a so-called broom (see [18]) and T 1

i, j (i + j = n − 2) a double star,

as shown in figure 1. We showed that among the trees in F (�)
n (n � 4), Bn,n−�+1

alone minimizes the largest eigenvalue, as well T 1
�−1,n−�−1 alone maximizes the

largest eigenvalue when
⌈n

2

⌉
� � � n−1. Simić et al. [19] completely determined

the tree maximizing the largest eigenvalue when 2 � � � n − 1. Furthermore in
[14] we proved the following result:

Theorem 1.1 [14]. Let T (�) be a tree in F (�)
n , � = 2, 3, . . . , n−1 and n � 4. Then

λ1(T (n−1)) > λ1(T (n−2)) > · · · λ1

(
T

(⌈2n
3

⌉))
> λ1

(

T 1⌊
n
3

⌋
,
⌈2n

3

⌉
−2

)

� λ1(T (l)),

where 2 � l �
⌈

2n
3

⌉
− 1, with the equality iff T (l) ∼= T 1⌊

n
3

⌋
,
⌈2n

3

⌉
−2

.

Theorem 1.1 indicates that, the largest eigenvalue of a tree T in Fn strictly
increases with its maximum degree when �(T ) �

⌈
2n
3

⌉
− 1.

In the present paper, we investigate the relation between the largest eigen-
value and the maximum degree of a tree with a perfect matching. In quantum
chemistry a tree with a perfect matching represents an acyclic Kekulean conju-
gated hydrocarbon molecule (see [2,20]), so it is significant to investigate the larg-
est eigenvalue of a tree with a perfect matching. Xu [15] and Chang [8] deter-
mined the first seven trees with perfect matchings and large largest eigenvalues.
Clearly, if a tree T on n vertices has a perfect matching, then n must be even,
say n = 2m, and �(T ) � m = (n

2 � �2n/3� − 1) with the equality iff T ∼= T ∗
2m ,

which is shown in figure 1. Hence though Tn ⊆ Fn, theorem 1.1 conveys nothing
on the relation for a tree in Tn. In section 3, we determine the trees in T (�)

2m with
extreme largest eigenvalues (see theorems 3.1 and 3.2). Furthermore it is shown
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Figure 1. Trees Bn,n−�+1, T 1
i, j , and T ∗

2m .

that the largest eigenvalue of a tree T in T2m also strictly increases with its max-
imum degree when

⌈n
3

⌉ =
⌈

2m
3

⌉
� �(T ) � m = n/2 (see theorem 3.6). To carry

out this, some graph transformations are introduced in section 2.

2. Preliminaries

Some groundwork is needed. First, we formulate some useful lemmas as
follows, which can be used to compare the largest eigenvalues of two rela-
tional graphs. For convenience some transformations based on these lemmas are
defined.

Lemma 2.1 [16]. Let G be a connected graph, and G ′ a proper subgraph of G.
Then λ1(G ′) < λ1(G).

Lemma 2.2 [16, 6]. Let u be a vertex of a non-trivial connected graph G, and let
G0

k,l denote the graph obtained from G by adding pendant paths of length k and
l at u. If k � l � 1, then λ1(G0

k,l) > λ1(G0
k+1,l−1).

Definition 2.3. We call the transformation from G0
k,l to G0

k+1,l−1 the α0 transfor-
mation of G0

k,l , that from G0
k,l to G0

k+2,l−2 when k � l � 2 the α2
0 transformation

of G0
k,l , and that from G0

k,l to G0
k+l,0 the α∗

0 transformation of G0
k,l .

Lemma 2.4 [16]. Let u and v be two adjacent vertices of G such that the degrees
of u and v are both greater than 1 in G. Let G1

k,l denote the graph obtained
from G by adding a pendant path of length k (resp. l) at vertex u (resp. v). If
k � l � 1, then λ1(G1

k,l) > λ1(G1
k+1,l−1).

Definition 2.5. We call the transformation from G1
k,l to G1

k+1,l−1 the α1 transfor-
mation of G1

k,l .

Lemma 2.6 [17]. Let w and v be two vertices in a non-trivial connected graph
G and suppose that s pendant paths of length 2 are added to G at w, and
t pendant paths of length 2 are added to G at v to form G2

s,t . Then either
λ1(G2

s+i,t−i ) > λ1(G2
s,t ) (1 � i � t) or λ1(G2

s−i,t+i ) > λ1(G2
s,t ) (1 � i � s).
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Definition 2.7. We call the transformation from G2
s,t to G1, where G1 ∼= G2

s+t,0
or G2

0,s+t such that λ1(G1) > λ1(G2
s,t ), the β transformation of G2

s,t .

Let G be a connected graph with perfect matchings, as shown in figure
2, consisting of a connected subgraph H with a tree T added to a vertex r of
H . Let |V (T )| be the number of vertices of T , including the vertex r . Suppose
ν(T ) � 3. If v is a vertex of T furthest from r , then it is easy to see that v is
a pendant vertex of G and adjacent to a vertex u of degree 2. Let G1 be the
graph obtained from G − u − v by adding a pendant path of length 2 to r .
If |V (T − u − v)| is greater than 3, we can repeat above transformation on G1.
Finally we get a graph G0 when |V (T )| is even or a graph H0 when |V (T )| is
odd. G0 and H0 are shown in figure 2.

Lemma 2.8 [10]. Let G, G0, and H0 be the above three graphs shown in figure 2.
Then λ1(G0) > λ1(G) and λ1(H0) > λ1(G), respectively.

Definition 2.9. We call the transformation from G to G0 or H0 the γ transfor-
mation of G (on T ).

Definition 2.10 [15]. Let T be a tree in Fn, and n � 4. Let e = uv be a non-pen-
dent edge of T . T0 is the graph obtained from T in the following way:

(1) Contract the edge e = uv.

(2) Add a pendant edge to the vertex u(= v).

The procedures (1) and (2) are called the edge-growing transformation of T
(on edge e), or e.g.t of T (on edge e) for short.

Lemma 2.11 [15]. Let T be a tree with at least a non-pendent edge in Fn, and
n � 4. If T can be transformed into T0 by carrying out a step of e.g.t, then
λ1(T0) > λ1(T ).

Figure 2. Graphs G, G1, G0, and H0.
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We will use α0, α
2
0, α∗

0 , α1, β, γ transformations and e.g.t to compare the
largest eigenvalues of two trees in T2m . Note that if a tree T has a perfect match-
ing, then T has a unique perfect matching. Denote the unique perfect match-
ing of T by M(T ). Clearly if T ′ is obtained from a tree T in T2m by a step
of α2

0, α∗
0 , β or γ transformation, then T ′ ∈ T2m , i.e., T ′ still has a perfect

matching. But α0, α1 transformations and e.g.t do not always have this property.
For α0 transformation of a tree T ∼= G0

k,l in T2m, T ′ = G0
k+1,l−1 ∈ T2m iff

Pk+1 ∪ Pl+1 is an M(T )-alternating path, where Pk+1 and Pl+1 denote the two
pendant paths added to G at u. For α1 transformation of a tree T ∼= G1

k,l in
T2m, T ′ = G1

k+1,l−1 ∈ T2m iff Pk+1∪{uv}∪Pl+1 is an M(T )-alternating path, where
Pk+1 and Pl+1 denote the two pendant paths added to G at u and v, respectively.
Finally if T ′ is obtained from a tree T in T2m by a step of e.g.t, then T ′ ∈ T2m
iff the e.g.t is carried out on an (non-pendant) edge in M(T ).

We summarize the above discussions and lemmas 2.2, 2.4, 2.6, 2.8 and 2.11
into the following.

Corollary 2.12. Let T be a tree in T2m |.
(1) If T ′ can be obtained from T by a step of α2

0 or α∗
0 transformation, then

T ′ ∈ T2m and λ1(T ′) < λ1(T ).

(2) If T ∼= G0
k,l and Pk+1 ∪ Pl+1 is an M(T )-alternating path, then T ′ =

G0
k+1,l−1 ∈ T2m and λ1(T ′) < λ1(T ).

(3) If T ∼= G1
k,l and Pk+1 ∪ {uv} ∪ Pl+1is an M(T )-alternating path, then

T ′ = G1
k+1,l−1 ∈ T2m and λ1(T ′) < λ1(T ).

(4) If T ′ can be obtained from T by a step of β or γ transformation, or
by a step of e.g.t on a non-pendant edge in M(T ), then T ′ ∈ T2m and
λ1(T ′) > λ1(T ).

We also need the following partition of T2m introduced by Chang [1]. Let
X2m be the set of the trees on 2m vertices obtained from a tree T̂ on m vertices
by adding one pendant edge to each of the m vertices of T̂ . Then X2m ⊆ T2m ⊆
F2m . If T ∈ X2m is obtained from T̂ , then T is denoted by C(T̂ ). Clearly every
pendant edge of a tree T in X2m belongs to M(T ), i.e., M(T ) consists of the pen-
dant edges of T . Let Xt

2m = {T ∈ T2m | there are exactly t non-pendant edges,
which belong to M(T )}. Then X0

2m = X2m, Xm−2
2m = {P2m} and T2m | = ∪m−2

t=0 Xt
2m .

It is not difficult to see that any T ∈ Xt
2m (t = 1, 2, . . . , m−2) can be transformed

into a tree in Xt−1
2m by a step of e.g.t on a non-pendant edge in M(T ).

Lemma 2.13 [8]. Let C(T̂ ) be a tree in X2m . Then

λ1(T ) = 1
2

[√
λ2

1(T̂ ) + 4 + λ1(T̂ )

]
.
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Lemma 2.14 [9]. λ1(T 1
1,n−3) > λ1(T 1

2,n−4) > · · · > λ1

(

T 1⌊
n−2

2

⌋
,
⌈

n−2
2

⌉

)

.

Lemma 2.15 [15]. Let T be a tree in T2m |. Then λ1(T ) � 1
2 (

√
m − 1 +√

m + 3), m = 1, 2, 3, . . ., with the equality iff T ∼= T ∗
2m .

3. Main results

For convenience, we introduce more notations. Let G and H be two graphs
whose vertex sets are disjoint. If v is a vertex of G and w a vertex of H , then
G(v, w)H denotes the graph obtained from G and H by identifying the ver-
tices v and w. Let K1,� be a star with center v, and v1, v2, . . . , v� the pen-
dant vertices of K1,�. Let Hi be a tree with maximum degree at most �, ui
a vertex of Hi with dHi (ui ) � � − 1, ni = |V (Hi )| � 1 (including the
vertex ui ), i = 1, 2, . . . , �, and

∑�
i=1 ni = n − 1. Then simply denote

K1,�(v1, u1)H1(v2, u2)H2, . . . , (v�, u�)H� by T (n, �; H1, H2, . . . , H�). If Hi is a
pendant path Pni with an end vertex ui , then write Hi as Pni ; if Hi consists of⌊

ni −1
2

⌋
pendant paths of length 2 and ni − 1 − 2

⌊
ni −1

2

⌋
(= 0 or 1) pendant

path of length 1 with a common end vertex ui , then write Hi as Cni . Thus F (�)
n

is just the set of T (n, �; H1, H2, . . . , H�)s. And of course each T ∈ T (�)

2m has
the form T (2m, �; H1, H2, . . . , H�). Moreover, there is exactly one of the ni s is
odd, since T has a perfect matching. Without loss of generality, assume that n1
is odd. Then in fact, T (�)

2m is just the set of T (2m, �; H1, H2, . . . , H�)’s such that
n1 � 1 is odd, ni � 2 is even for i = 2, 3, . . . ,�,

∑�
i=1 ni = 2m − 1, H1 − u1 and

Hi (i = 2, 3, . . . , �) have perfect matchings. Without loss of generality assume
n2 � n3 � · · · � n�.

Let

L(�)

2m = T (2m, �; P1, P2, . . . , P2, P2m−2�+2), U (�)

2m = C(T 1
�−2,m−�)

(
� �

⌈
m−2

2

⌉)
,

and let N (� − 1, m − �) denote the tree obtained from T 1
�−1,m−�

by adding a
pendant edge to each pendant vertex of T 1

�−1,m−�
.

Then

�(L(�)

2m ) = �(U (�)

2m ) = � and �(N (� − 1, m − �))

= max{�, m − � + 1}.
L(�)

2m , U (�)

2m

and N (� − 1, m − �) are shown in figure 3.

Theorem 3.1. L(�)

2m is the unique tree in T (�)

2m , which has the minimum largest
eigenvalue, where 2 � � � m.
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Figure 3. Trees L(�)
2m , U (�)

2m , and N (� − 1, m − �).

Proof. Let T = T (2m, �; H1, H2, . . . , H�) be a tree in T (�)

2m and T �L(�)

2m . First
T can be transformed into T ′ = T (2m, �; Pn1, Pn2, . . . , Pn�) by repeatedly carry-
ing out α∗

0 transformation on T , so λ1(T ′) � λ1(T ), with the equality iff T ′ ∼= T
by corollary 2.12. (1). Moreover by α0 and α2

0 transformations, T ′ can be trans-
formed into L(�)

2m . The conclusion follows from corollary 2.12. (1) and (2).

Theorem 3.2. U (�)

2m is the unique tree in T (�)

2m , which has the maximum largest
eigenvalue, where

⌈m
2

⌉ + 1 � � � m and m � 2.

Proof. Let T = T (2m, �; H1, H2, . . . , H�) be a tree in T (�)

2m and T �U (�)

2m . First
T can be transformed into T ′ = T (2m, �; Cn1, Cn2, . . . , Cn�) by a step of γ

transformation to T on each Hi , i = 1, 2, . . . , �, so λ1(T ) � λ1(T ′), with the
equality iff T ′ ∼= T by corollary 2.12. (4). Moreover T ′ can be transformed into
T ′′ = U (�)

2m or N (� − 1, m − �) by β transformations. Since � �
⌈m

2

⌉ + 1,
�(T ′′) = �. Noting that N (� − 1, m − �) can be obtained from U (�)

2m by a step
of α1 transformation, the proof is completed.

Lemma 3.3. λ1(U
(m)

2m ) > λ1

(
U (m−1)

2m

)
> · · · > λ1

(

U

(⌈
m
2

⌉
+1

)

2m

)

.

Proof. Recall that U (�)

2m = C(T 1
�−2,m−�

). From lemma 2.13, we have λ1(U
(�)

2m )

strictly increases with λ1(T 1
�−2,m−�

), and so the conclusion follows from lemma
2.14.

Lemma 3.4. Let T (�) be a tree in T (�)

2m , where m � 4 and
⌈

2m
3

⌉
+ 1 � � � m.

Then λ1(T (�−1)) < λ1(T (�)).

Proof. Since
⌈

2m
3

⌉
�

⌈m
2

⌉ + 1 when m � 4, by theorems 3.1 and 3.2, it suffices

to show that λ1(U
(�−1)

2m ) < λ1(L(�)

2m ) for
⌈

2m
3

⌉
+ 1 � � � m. When � = m, since

L(�)

2m = T ∗
2m , the conclusion holds from lemma 2.15. So assume � � m − 1. Thus

L(�)

2m contains T ∗
2�

as a proper subgraph, and by lemmas 2.1 and 2.15

λ1(L(�)

2m ) > λ1(T ∗
2�) = 1

2
[√� − 1 + √

� + 3].
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Since U (�−1)

2m = C(T 1
�−3,m−�+1), by lemma 2.13,

λ1(U
(�−1)

2m ) = 1
2
[
√

λ2
1(T 1

�−3,m−�+1) + 4 + λ1(T 1
�−3,m−�+1)].

And from the proof of theorem 3.1 in [9], we have

λ1(T 1
�−3,m−�+1) =

√
1
2 (m − 1 +

√
(m − 1)2 − 4(� − 3)(m − � + 1)).

So we are done by verifying that

1
2 [√� − 1 + √

� + 3] � λ1(U
(�−1)

2m ) ⇔ � � λ2
1(T 1

�−3,m−�+1) + 1

⇔ � �
⌈

2m
3

⌉
+ 1.

Lemma 3.5. Let T be a tree in T2m , where 2 � �(T ) �
⌈

2m
3

⌉
and m � 4. Then

λ1(T ) � λ1

(

U

(⌈2m
3

⌉)

2m

)

, with the equality iff T ∼= U

(⌈2m
3

⌉)

2m .

Proof. We distinguish the following three cases.

Case 1.
⌊m

3

⌋ + 2 � � = �(T ) �
⌈

2m
3

⌉
. Suppose T = T (2m, �; H1, H2, . . . , H�).

First T can be transformed into T ′ = T (2m, �; Cn1, Cn2, . . . , Cn�) by a step of
γ transformation to T on each Hi , i = 1, 2, . . . , �. Moreover by β transforma-
tions we can obtain a tree T ′′, where T ′′ = C(T 1

�−2,m−�
) or N (� − 1, m − �).

Thus �(T ′′) = max{�, m − � + 2}. Since m − � + 2 � m − ⌊m
3

⌋ =
⌈

2m
3

⌉
, we

have
⌊m

3

⌋ + 2 � �(T ′′) �
⌈

2m
3

⌉
. Noting that N (� − 1, m − �) can be obtained

from C(T 1
�−2,m−�

) by a step of α1 transformation, by corollary 2.12. (3), (4),
and lemma 3.3, we have

λ1(T ) � λ1(T ′) � λ1(T ′′) � λ1(C(T 1
�−2,m−�)) � λ1

(

U

(⌈2m
3

⌉)

2m

)

,

with all the equalities iff T ∼= U

(⌈2m
3

⌉)

2m .

Case 2. � = ⌊m
3

⌋ + 1.

Subcase 2.1. T ∈ X2m . Then T = C(F) for some F in Fm with �(F) = � − 1 =⌊m
3

⌋
. From Lemma 2. 13, we know that λ1(C(F)) strictly increases with λ1(F),
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Figure 4. Trees R1, R2, R3, and R4 in the proof of lemma 3.2.

so from lemma 2. 14, we have

λ1(T ) � λ1

(

C

(

T 1⌊ m
3

⌋
,
⌈

2m
3

⌉
−2

))

= λ1

(

U

(⌈
2m
3

⌉)

2m

)

,

with the equality iff T ∼= U

(⌈2m
3

⌉)

2m .

Subcase 2.2. T ∈ Xt
2m, t � 1. Suppose T = T (2m, �; H1, H2, . . . , H�). Since ni =

n(Hi ) � 2, i = 2, 3, . . . , �, and
∑�

i=1 ni = 2m−1, n1 � 2m−1−2
⌊m

3

⌋ = 2
⌈

2m
3

⌉
−

1. Similarly n� � 2
⌈

2m
3

⌉
. If n� � 2

⌈
2m
3

⌉
− 2, then by a step of γ transforma-

tion of T on each Hi we obtain T1 = K1,�(v1, u1)Cn1(v2, u2)Cn2 · · · (v�, u�)Cn� .
Then

⌊m
3

⌋ + 1 � �(T1) �
⌈

2m
3

⌉
and T1 ∈ X2m , and we are done by corollary

2.12. (4), case 1 and subcase 2.1. So assume n� = 2
⌈

2m
3

⌉
. Then by a simple

calculation we have n1 = 1, ni = 2, i = 2, 3, . . . , � − 1, and there is a path of
length at least 3 with an end vertex u� in H�. Let u�w1w2, . . . , ws, s � 3, be
such a path. Let I1 and I2 be the two components of H� − u�w1. Then by a
step of γ transformation of T on each of I1 and I2 we obtain a tree R1 or R2,
as shown in figure 4. If R1 is obtained, then since

⌊m
3

⌋ + 1 � �(R1) �
⌈

2m
3

⌉

and R1 ∈ X2m , we are done by case 1 or subcase 2.1. If R2 is obtained, then
by a step of β transformation of R2 we get a tree R with R ∼= R3 or R4 and
λ1(T ) � λ1(R) with equality iff T ∼= R. Both R3 and R4 are shown in figure 4.
Noting that �(R) = �(R3) = �(R4) =

⌈
2m
3

⌉
we are done by Case 1.

Case 3. � �
⌊m

3

⌋
.

Subcase 3.1. T ∈ X2m . Similar to the discussions in subcase 2.1.

Subcase 3.2. T ∈ Xt
2m , t � 1. Then there is a nonpendant edge e ∈ M(T ). Obtain

T1 ∈ Xt−1
2m from T by a step of e.g.t on e. Thus �(T1) � 2� − 1 � 2

⌊m
3

⌋ − 1 <
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⌈
2m
3

⌉
. If T1 /∈ X2m and �(T1) �

⌊m
3

⌋
, then we can repeat the above discussion

to obtain trees T2, T3, . . . , Tl , such that Tl ∈ X2m or �(Tl) �
⌊m

3

⌋ + 1. Hence the
conclusion holds by case 1, case 2 or subcase 3.1.

The proof is thus completed.

We are now in a position to state our main result.

Theorem 3.6. Let T (�) be a tree in T (�)

2m |, � = 2, 3, . . . , m and m � 4. Then

λ1

(
T (m)

)
> λ1

(
T (m−1)

)
> · · · λ1

(
T

(
⌈

2m
3

⌉
+1)

)
> λ1

(

U

(⌈
2m
3

⌉)

2m

)

� λ1

(
T (l)

)
,

where 2 � l �
⌈

2m
3

⌉
, with the equality iff T (l) ∼= U

(⌈2m
3

⌉)

2m ). Furthermore the

bound
⌈

2m
3

⌉
is best possible.

Proof. The first part follows immediately from lemmas 3.4 and 3.5. To see the
bound

⌈
2m
3

⌉
is best possible, let 2m = 16. Then

⌈
2m
3

⌉
= 6, U (5)

16 ∈ T (5)

16 and L(6)

16 ∈ T (6)

16 ,

but λ1(U
(5)

16 ) ≈ 2.6764 > λ1(L(6)

16 ) ≈ 2.6254.
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